
Pergamon 

PII: S0040-4039(96)02345-3 

Tetrahedron Letters. Vol. 38, No. 3. pp. 335-338. 1997 
Copyright O 1996 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0040-4039/97 $17.00 + 0.00 

Oxidation of [60]Fullerene by the Methyitrioxorhenium-Hydrogen Peroxide System 

Robert W. Murray* and Kaliappan Iyanar 

Department of Cbemistry, University of Missouri-St. Louis, St. Louis, MO, 63121, USA 

Abstract: Methyltrioxorhenium catalyzes the oxidation of C6o by hydrogen peroxide to give C6oO. 
The reaction continues to produce C6oO2 and higher oxides. The yield of C6oO represents a modest 
improvement over that given by other methods. The reaction conditions can be manipulated to give 
high conversions of the Ceo. Copyright © 1996 Elsevier Science Ltd 

Realization of the anticipated technical potential of fullerenes will depend to a great extent on the 

availability of well-characterized derivatives. Oxidation reactions are expected to play an important role in the 

preparation of some of these derivatives. A key oxidation derivative is the monooxide 1,2-epoxy[60]fuUerene 

(C6oO). A number of methods have been reported for the synthesis of C6oO. Photooxidation of C6o in benzene, 

with and without added benzil, gave the oxide in modest yields. 1 Oxidation of C60 with dimethyldioxirane gave 

a low yield of C~oO accompanied by a 1,3-dioxolane derivative. 2 A number of reports 3 have described the 

formation of C6oO when C6o is treated with ozone. Epoxidation of C6o with m-chloroperbenzoic acid gives 4 an 

improved yield (30 %) of the oxide. Several P450 chemical model systems have been used 5 to oxidize C6o to 

C6oO in moderate yield. It seemed to us that there remains a need for an additional source of C6oO and for a 

process giving higher conversions of C60. 

We have become interested in the chemistry of the methyltrioxorhenium-hydrogen peroxide system 

(MTO-H202) largely because of the similarity of the chemistry of this system to that of the dioxiranes. 6 The 

MTO-H202 system has been used successfully to oxidize a variety of organic substrates. Of particular interest 

to the work described here is the use of this system to epoxidize double bonds. 7 Also of pertinence to the 

is the report 8 that this metal system is capable of current work oxidizing arenes. 
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We now report that the M T O - H 2 0 2  system oxidizes C6o 3 to C6oO 4 in a very smooth reaction (Scheme 

1) and in a yield which modestly exceeds that obtained in other methods. It has been s h o w n  9'1° that MTO forms 

two adducts with hydrogen peroxide, 1 and 2 (Scheme 1).Under the conditions of our reactions we expect 2 to 

be the major oxidant. 

We have carried out these oxidations under a variety of conditions H some of which are summarized in 

Table 1. The best yield (35.4 %, entry 5) was obtained when the MTO was at the next to highest 

concentration. Increasing the amount of MTO further gives a higher conversion, but with a slightly lower yield 

of 4 (entry 9). Likewise, adding an additional amount of UHP (Urea hydrogen Peroxide) at 12 h leads to the 

highest conversion, but with a reduced yield of 4 (entry 11). Allowing the MTO to prior associate with the C6o 

before adding the oxidant leads to a higher yield of 4 and a higher conversion of the C6o (compare entries 8 and 

9). Control experiments show that using only peroxide (entry 10) or only MTO (entry 7) gives only minimal 

reaction. 

Table 1. Oxidation of C6o with H202-Methyltrioxorhenium" 

Entry C6o UHP MTO Yield of Conversion 
mg,(mmol) g, (mmol) rag, (mmol) C6oO(%) b (%) 

1 5 0.01306 1.0 31.28 38.00 
(0.0069) (0.1388) (0.004) 

2 5 0.01306 0.2 8.45 12.69 
(0.0069) (0.1388) (0.0008) 

3 5 0.01306 0.5 24.59 36.49 
(0.0069) (0.1388) (0.002) 

4 ¢ 5 0.I mL 0.5 10.30 28.66 
(0.0069) (0.1388) (0.002) 

5 5 0.1306 4.0 35.40 42.72 
(0.0069) (0.1388) (0.016) 

6 d 5 0.01306 1.7 27.69 41.68 
(0.0069) (0.1388) (0.007) 

7 d 5 _ 1.7 1.00 1.00 
(0.0069) (0.007) 

8 5 0.01306 34.7 22.63 35.95 
(0.0069) (1.388) (0.139) 

9 5 0.1306" 34.7 34.51 61.89 
(0.0069) (1.388) (0.139) 

10 5 0.01306 0.63 1.49 
(0.0069) (1.388) 

11 5 0.1306 34.7 33.54 f 60.11 f 
(0.0069) (1.388) (0.139) 

28.67 g 66.76 g 

"RT, 24h; Solvent - Benzene 10 mL. bAssayed by HPLC. ¢ 0.1 mL HzO2 in ethanol used. d 5 mL Benzene 
used. "Oxidant added after lh. f At 12h. ~ Additional UHP (1.38 mmol) added after 12h. 
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